High-Order Compact Difference Scheme and Multigrid Method for Solving the 2D Elliptic Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Order Compact Difference Scheme and Multigrid Method for 2D Elliptic Problems with Variable Coefficients and Interior/Boundary Layers on Nonuniform Grids

In this paper, a high order compact difference scheme and a multigrid method are proposed for solving two-dimensional (2D) elliptic problems with variable coefficients and interior/boundary layers on nonuniform grids. Firstly, the original equation is transformed from the physical domain (with a nonuniform mesh) to the computational domain (with a uniform mesh) by using a coordinate transformat...

متن کامل

A fourth-order compact difference scheme on face centered cubic grids with multigrid method for solving 2D convection diffusion equation

We present a fourth-order compact finite difference scheme on the face centered cubic (FCC) grids for the numerical solution of the two-dimensional convection diffusion equation. The seven-point formula is defined on a regular hexagon, where the strategy of directional derivative is employed to make the derivation procedure straightforward, efficient, and concise. A corresponding multigrid meth...

متن کامل

High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations

In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...

متن کامل

High-order numerical schemes based on difference potentials for 2D elliptic problems with material interfaces

Article history: Received 11 February 2016 Received in revised form 13 July 2016 Accepted 30 August 2016 Available online 8 September 2016

متن کامل

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids

In this paper, we develop and analyze an efficient multigrid method to solve the finite element systems from elliptic obstacle problems on two dimensional adaptive meshes. Adaptive finite element methods (AFEMs) based on local mesh refinement are an important and efficient approach when the solution is non-smooth. An optimality theory on AFEM for linear elliptic equations can be found in Nochet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2018

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2018/7831731