High-throughput single-molecule telomere characterization
نویسندگان
چکیده
منابع مشابه
High-throughput single-molecule fluorescence spectroscopy using parallel detection.
Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. The basic concept of this technique is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those even...
متن کاملHigh-throughput single-molecule studies of protein-DNA interactions.
Fluorescence and force-based single-molecule studies of protein-nucleic acid interactions continue to shed critical insights into many aspects of DNA and RNA processing. As single-molecule assays are inherently low-throughput, obtaining statistically relevant datasets remains a major challenge. Additionally, most fluorescence-based single-molecule particle-tracking assays are limited to observi...
متن کاملHigh Throughput Characterization of Epitaxially Grown Single-Layer MoS2
The growth of single-layer MoS2 with chemical vapor deposition is an established method that can produce large-area and high quality samples. In this article, we investigate the geometrical and optical properties of hundreds of individual single-layer MoS2 crystallites grown on a highly-polished sapphire substrate. Most of the crystallites are oriented along the terraces of the sapphire substra...
متن کاملSingle-molecule choreography between telomere proteins and G quadruplexes.
Telomeric DNA binds proteins to protect chromosome ends, but it also adopts G quadruplex (GQ) structures. Two new studies by Hwang and colleagues (in this issue of Structure) and Ray and colleagues (published elsewhere) use single molecule imaging to reveal how GQs affect the binding of different telomere associated proteins. The data suggest that GQs play important roles in regulating accessib...
متن کاملHigh-throughput single-molecule analysis of DNA–protein interactions by tethered particle motion
Tethered particle motion (TPM) monitors the variations in the effective length of a single DNA molecule by tracking the Brownian motion of a bead tethered to a support by the DNA molecule. Providing information about DNA conformations in real time, this technique enables a refined characterization of DNA-protein interactions. To increase the output of this powerful but time-consuming single-mol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genome Research
سال: 2017
ISSN: 1088-9051,1549-5469
DOI: 10.1101/gr.222422.117