Higher rank stable pairs and virtual localization
نویسندگان
چکیده
منابع مشابه
Higher Rank Stable Pairs on K3 Surfaces
We define and compute higher rank analogs of PandharipandeThomas stable pair invariants in primitive classes for K3 surfaces. Higher rank stable pair invariants for Calabi-Yau threefolds have been defined by Sheshmani [She11b, She11a] using moduli of pairs of the form On → F for F purely one-dimensional and computed via wall-crossing techniques. These invariants may be thought of as virtually c...
متن کاملHigher rank Einstein solvmanifolds
In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.
متن کاملGENERALIZED HIGHER-RANK NUMERICAL RANGE
In this note, a generalization of higher rank numerical range isintroduced and some of its properties are investigated
متن کاملthe survey of the virtual higher education in iran and the ways of its development and improvement
این پژوهش با هدف "بررسی وضعیت موجود آموزش عالی مجازی در ایران و راههای توسعه و ارتقای آن " و با روش توصیفی-تحلیلی و پیمایشی صورت پذیرفته است. بررسی اسنادو مدارک موجود در زمینه آموزش مجازی نشان داد تعداد دانشجویان و مقاطع تحصیلی و رشته محل های دوره های الکترونیکی چندان مطلوب نبوده و از نظر کیفی نیز وضعیت شاخص خدمات آموزشی اساتید و وضعیت شبکه اینترنت در محیط آموزش مجازی نامطلوب است.
GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE
The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Analysis and Geometry
سال: 2016
ISSN: 1019-8385,1944-9992
DOI: 10.4310/cag.2016.v24.n1.a6