HILBERT 3-CLASS FIELD TOWERS OF REAL CUBIC FUNCTION FIELDS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite Hilbert Class Field Towers over Cyclotomic Fields

Weuse a result of Y. Furuta to show that for almost all positive integers m, the cyclotomic field (exp(2π i/m)) has an infinite Hilbert p-class field tower with high rankGalois groups at each step, simultaneously for all primes p of size up to about (log logm)1+o(1). We also use a recent result of B. Schmidt to show that for infinitely many m there is an infinite Hilbert p-class field tower ove...

متن کامل

Computing the Hilbert class field of real quadratic fields

Using the units appearing in Stark’s conjectures on the values of L-functions at s = 0, we give a complete algorithm for computing an explicit generator of the Hilbert class field of a real quadratic field. Let k be a real quadratic field of discriminant dk, so that k = Q( √ dk), and let ω denote an algebraic integer such that the ring of integers of k is Ok := Z+ ωZ. An important invariant of ...

متن کامل

On 2-class field towers of imaginary quadratic number fields

For a number field k, let k1 denote its Hilbert 2-class field, and put k2 = (k1)1. We will determine all imaginary quadratic number fields k such that G = Gal(k2/k) is abelian or metacyclic, and we will give G in terms of generators and relations.

متن کامل

Class number approximation in cubic function fields

A central problem in number theory and algebraic geometry is the determination of the size of the group of rational points on the Jacobian of an algebraic curve over a finite field. This question also has applications to cryptography, since cryptographic systems based on algebraic curves generally require a Jacobian of non-smooth order in order to foil certain types of attacks. There a variety ...

متن کامل

On 3-class Groups of Certain Pure Cubic Fields

Let p be a prime number, and let K = Q( 3 √p). Let M = Q(ζ, 3 √p) = Q( √ −3, 3 √p), where ζ is a primitive cube root of unity. Let SK be the 3-class group of K (that is, the Sylow 3-subgroup of the ideal class group of K). Let SM (respectively, SQ(ζ)) be the 3-class group ofM (respectively, Q(ζ)). Since Q(ζ) has class number 1, then SQ(ζ) = {1}. Assuming p ≡ 1 (mod 9), Calegari and Emerton [3, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Chungcheong Mathematical Society

سال: 2013

ISSN: 1226-3524

DOI: 10.14403/jcms.2013.26.3.517