Hilbert′s Projective Metric on Cones of Dirichlet Forms
نویسندگان
چکیده
منابع مشابه
Dirichlet forms on symmetric spaces
© Annales de l’institut Fourier, 1973, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/), implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichie...
متن کاملOn Cones of Nonnegative Quartic Forms
Historically, much of the theory and practice in nonlinear optimization has revolved around the quadratic models. Though quadratic functions are nonlinear polynomials, they are well structured and easy to deal with. Limitations of the quadratics, however, become increasingly binding as higher degree nonlinearity is imperative in modern applications of optimization. In the recent years, one obse...
متن کاملOn Certain Projective Generalizations of Metric
nificant. The values for platinum, given for comparison, were obtained along with the silicates. Albite and microcline have a smaller proportion of oxygen atoms than silica, and this should bring the theoretical value A, nearer 5.96 for them than for silica. Moreover, the values of Ap given contain the thermal effect of expansion. Allowances made for these two facts bring these substances into ...
متن کاملSpinors and forms on generalised cones
A method is presented, and used, for determining any heat-kernel coefficient for the form-valued Laplacian on the D-ball as an explicit function of dimension and form order. The calculation is offerred as a particular application of a general technique developed earlier for obtaining heat-kernel coefficients on a bounded generalised cone which involves writing the sphere and ball ζ–functions, a...
متن کاملA Note on Hilberts Operator
LEMMA L 1 When Kp< oo, then &fis a continuous (bounded) linear transformation with both domain and range Lp( — <*> , oo ), and § 2 / = — ƒ. LEMMA 2. Whenf(t)ÇzLi(— <*>, oo), then §ƒ exists for almost all x in ( — oo , co ), but does not necessarily belong to Li(a, b), where a, b are arbitrary numbers(— oo ^a<b^ oo) ; however (l+x)~\ &f\ÇzLi(— oo , co) when 0<q<l. When f and ^f belong to Li(— oo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1995
ISSN: 0022-1236
DOI: 10.1006/jfan.1995.1019