Hölder Continuity of the Minimizer of an Obstacle Problem with Generalized Orlicz Growth
نویسندگان
چکیده
Abstract We prove local $C^{0,\alpha }$- and $C^{1,\alpha }$-regularity for the solution to an obstacle problem with nonstandard growth. These results cover as special cases standard, variable exponent, double phase, Orlicz
منابع مشابه
the problem of divine hiddenness
این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...
15 صفحه اولan investigation about the relationship between insurance lines and economic growth; the case study of iran
مطالعات قبلی بازار بیمه را به صورت کلی در نظر می گرفتند اما در این مطالعه صنعت بیمه به عنوان متغیر مستفل به بیمه های زندگی و غیر زندگی شکسته شده و هم چنین بیمه های زندگی به رشته های مختلف بیمه ای که در بازار بیمه ایران سهم قابل توجهی دارند تقسیم میشود. با استفاده از روشهای اقتصاد سنجی داده های برای دوره های 48-89 از مراکز ملی داده جمع آوری شد سپس با تخمین مدل خود بازگشتی برداری همراه با تعدادی ...
15 صفحه اولan investigation of the types of text reduction in subtitling: a case study of the persian film gilaneh with english subtitles
چکیده ندارد.
15 صفحه اولThe Hölder continuity of solutions to generalized vector equilibrium problems
In this paper, by using a weaker assumption, we discuss the Hölder continuity of solution maps for two cases of parametric generalized vector equilibrium problems under the case that the solution map is a general set-valued one, but not a single-valued one. These results extend the recent ones in the literature. Several examples are given for the illustration of our results.
متن کاملA Hölder continuity result for a class of obstacle problems under non stan - dard growth conditions
A Hölder continuity result for a class of obstacle problems under non standard growth conditions Michela Eleuteri and Jens Habermann Michela Eleuteri, Dipartimento di Matematica di Trento via Sommarive 14, 38100 Povo (Trento) Italy; e-mail: [email protected] Jens Habermann, Department of mathematics, Friedrich-Alexander University, Bismarckstr. 1 1/2, 91054 Erlangen, Germany; e-mail: ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2021
ISSN: ['1687-0247', '1073-7928']
DOI: https://doi.org/10.1093/imrn/rnab150