Hölder's inequality for roots of symmetric operator spaces
نویسندگان
چکیده
منابع مشابه
Extremely Non-symmetric, Non-multiplicative, Non-commutative Operator Spaces
Motivated by importance of operator spaces contained in the set of all scalar multiples of isometries (MI-spaces) in a separable Hilbert space for C∗-algebras and Esemigroups we exhibit more properties of such spaces. For example, if an MI-space contains an isometry with shift part of finite multiplicity, then it is one-dimensional. We propose a simple model of a unilateral shift of arbitrary m...
متن کاملGeneralized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملA formula for the First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces
Let G/K be a simply connected spin compact inner irreducible symmetric space, endowed with the metric induced by the Killing form of G sign-changed. We give a formula for the square of the first eigenvalue of the Dirac operator in terms of a root system of G. As an example of application, we give the list of the first eigenvalues for the spin compact irreducible symmetric spaces endowed with a ...
متن کاملAn Operator Inequality Related to Jensen’s Inequality
For bounded non-negative operators A and B, Furuta showed 0 ≤ A ≤ B implies A r 2BA r 2 ≤ (A r 2BA r 2 ) s+r t+r (0 ≤ r, 0 ≤ s ≤ t). We will extend this as follows: 0 ≤ A ≤ B ! λ C (0 < λ < 1) implies A r 2 (λB + (1− λ)C)A r 2 ≤ {A r 2 (λB + (1 − λ)C)A r 2 } s+r t+r , where B ! λ C is a harmonic mean of B and C. The idea of the proof comes from Jensen’s inequality for an operator convex functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2015
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm228-1-5