Homogenizing media containing a highly conductive honeycomb substructure

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogenizing media containing a highly conductive honeycomb substructure

Abstract. The present paper deals with the homogenization of the heat conduction which takes place in a binary three-dimensional medium consisting of an ambiental phase having conductivity of unity order and a rectangular honeycomb structure formed by a set of thin layers crossing orthogonally and periodically. We consider the case when the conductivity of the thin layers is in inverse proporti...

متن کامل

A highly stretchable, transparent, and conductive polymer

Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting pol...

متن کامل

Highly elastic conductive polymeric MEMS

Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (...

متن کامل

Honeycomb nanogold networks with highly active sites.

The formation of macroporous honeycomb gold using an electrochemically generated hydrogen bubble template is described. The synthesis procedure induces the formation of highly active surfaces with enhanced electrocatalytic and surface enhanced Raman scattering properties.

متن کامل

Highly conductive paper for energy-storage devices.

Paper, invented more than 2,000 years ago and widely used today in our everyday lives, is explored in this study as a platform for energy-storage devices by integration with 1D nanomaterials. Here, we show that commercially available paper can be made highly conductive with a sheet resistance as low as 1 ohm per square (Omega/sq) by using simple solution processes to achieve conformal coating o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Asymptotic Analysis

سال: 2010

ISSN: 0921-7134

DOI: 10.3233/asy-2009-0970