Honest calibration assessment for binary outcome predictions

نویسندگان

چکیده

Summary Probability predictions from binary regressions or machine learning methods ought to be calibrated: if an event is predicted occur with probability $x$, it should materialize approximately that frequency, which means the so-called calibration curve $p(\cdot)$ equal identity, i.e., $p(x) = x$ for all $x$ in unit interval. We propose honest assessment based on novel confidence bands curve, are valid subject only natural assumption of isotonicity. Besides testing classical goodness-of-fit null hypothesis perfect calibration, our facilitate inverted tests whose rejection allows sought-after conclusion a sufficiently well-specified model. show have finite-sample coverage guarantee, narrower than those existing approaches, and adapt local smoothness $p$ variance observations. In application modelling infant having low birth weight, bounds give informative insights into model calibration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Open online assessment: keeping the tutors honest!

Tutors often find it difficult to mark consistently across all students in their classes. Students will occasionally complain about marking inconsistencies noticed when they compare assignments. The task of maintaining consistency in marking becomes much more difficult when all students can openly see everybody’s solutions, marks and tutors’ comments. This task becomes even more difficult when ...

متن کامل

Anxiety and outcome predictions.

Research shows that people display a downward shift in their predictions in anticipation of performance and feedback. The authors used a misattribution paradigm to explore whether anxiety serves as a signal for predictions. Participants (N = 108) anticipating results from an important test either immediately or in a few days were or were not encouraged to attribute any arousal they experienced ...

متن کامل

Assessment of Different Link Functions for Modeling Binary Data to Derive Sound Inferences and Predictions

Binary data are widely used for spatial modeling and when inferences and predictions are to be derived. If a Generalized Linear Model (GLM) is applied, logit functions are often used. Here we show alternatives to the traditional logit approach using probit and the complementary log log link functions. We present a software-based approach and two methods of assessing which link function performs...

متن کامل

diagnostic and developmental potentials of dynamic assessment for writing skill

این پایان نامه بدنبال بررسی کاربرد ارزیابی مستمر در یک محیط یادگیری زبان دوم از طریق طرح چهار سوال تحقیق زیر بود: (1) درک توانایی های فراگیران زمانیکه که از طریق برآورد عملکرد مستقل آنها امکان پذیر نباشد اما در طول جلسات ارزیابی مستمر مشخص شوند; (2) امکان تقویت توانایی های فراگیران از طریق ارزیابی مستمر; (3) سودمندی ارزیابی مستمر در هدایت آموزش فردی به سمتی که به منطقه ی تقریبی رشد افراد حساس ا...

15 صفحه اول

Better average - case predictions fork - binary

Papers by Goldman, Rivest and Schapire, and Goldman and War-muth contain worst case analyses for several polynomial time algorithms for predicting k-binary relations. Here we present an empirical study of the average-case performance of those algorithms, and also of two new methods which dominate them in this average-case setting. The better of the two methods uses a graph coloring heuristic to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2022

ISSN: ['0006-3444', '1464-3510']

DOI: https://doi.org/10.1093/biomet/asac068