Horrocks splitting on Segre–Veronese varieties

نویسندگان

چکیده

Abstract We prove an analogue of Horrocks’ splitting theorem for Segre–Veronese varieties building upon the theory Tate resolutions on products projective spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frobenius Splitting for Schubert Varieties

This thesis presents an expository account of the use of Frobenius splitting techniques in the study of Schubert varieties. After developing the basic theory of Frobenius splitting, we show that the Schubert and Bott-Samelson varieties are split and use this to derive geometric consequences in arbitrary characteristic. The main result highlighted is that Schubert varieties are normal, Cohen-Mac...

متن کامل

A Splitting Criterion for Vector Bundles on Higher Dimensional Varieties

We generalize Horrocks’ criterion for the splitting of vector bundles on projective space. We establish an analogous splitting criterion for vector bundles on arbitrary smooth complex projective varieties of dimension ≥ 4, which asserts that a vector bundle E on X splits iff its restriction E|Y to an ample smooth codimension 1 subvariety Y ⊂ X splits.

متن کامل

Splitting Criteria for Vector Bundles on Higher Dimensional Varieties

We generalize Horrocks’ criterion for the splitting of vector bundles on projective space. We establish an analogous splitting criterion for vector bundles on a class of smooth complex projective varieties of dimension ≥ 4, over which every extension of line bundles splits.

متن کامل

Splitting Varieties for Triple Massey Products

We construct splitting varieties for triple Massey products. For a, b, c ∈ F∗ the triple Massey product 〈a, b, c〉 of the corresponding elements of H(F, μ2) contains 0 if and only if there is x ∈ F∗ and y ∈ F[ √ a, √ c]∗ such that bx = NF[a,c]/F(y), where NF[ √ a, √ c]/F denotes the norm, and F is a field of characteristic different from 2. These varieties satisfy the Hasse principle by a result...

متن کامل

Compactifications of Splitting Models of Pel-type Shimura Varieties

We construct toroidal and minimal compactifications, with expected properties concerning stratifications and formal local structures, for all integral models of PEL-type Shimura varieties defined by taking normalizations over the splitting models considered by Pappas and Rapoport. (These include, in particular, all the normal flat splitting models they considered.)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2021

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02781-z