How many eigenvalues of a random symmetric tensor are real?

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Many Eigenvalues of a Random Matrix Are Real ? Alan

Let A be an n x n matrix whose elements are independent randomvariables with standard normal distributions. As n ..... 00 , the expected numberof real eigenvalues is asymptotic to .J2nln. We obtain a closed form expres-sion for the expected number of real eigenvalues for finite n, and a formula forthe density of a real eigenvalue for finite n. Asymptotically, a real normalized<l...

متن کامل

How many eigenvalues of a Gaussian random matrix are positive?

We study the probability distribution of the index N(+), i.e., the number of positive eigenvalues of an N×N Gaussian random matrix. We show analytically that, for large N and large N(+) with the fraction 0≤c=N(+)/N≤1 of positive eigenvalues fixed, the index distribution P(N(+)=cN,N)~exp[-βN(2)Φ(c)] where β is the Dyson index characterizing the Gaussian ensemble. The associated large deviation r...

متن کامل

How many zeros of a random polynomial are real?

Abstract. We provide an elementary geometric derivation of the Kac integral formula for the expected number of real zeros of a random polynomial with independent standard normally distributed coefficients. We show that the expected number of real zeros is simply the length of the moment curve (1, t, . . . , tn) projected onto the surface of the unit sphere, divided by π. The probability density...

متن کامل

How Many Eigenvalues of a Product of Truncated Orthogonal Matrices Are Real?

A truncation of a Haar distributed orthogonal random matrix gives rise to a matrix whose eigenvalues are either real or complex conjugate pairs, and are supported within the closed unit disk. This is also true for a product Pm of m independent truncated orthogonal random matrices. One of most basic questions for such asymmetric matrices is to ask for the number of real eigenvalues. In this pape...

متن کامل

Eigenvalues of a real supersymmetric tensor

In this paper, we define the symmetric hyperdeterminant, eigenvalues and E-eigenvalues of a real supersymmetric tensor. We show that eigenvalues are roots of a one-dimensional polynomial, and when the order of the tensor is even, E-eigenvalues are roots of another one-dimensional polynomial. These two one-dimensional polynomials are associated with the symmetric hyperdeterminant. We call them t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2019

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/7910