Human Behavior Recognition Based On CNN
نویسندگان
چکیده
منابع مشابه
Facial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملAction Recognition with Image Based CNN Features
Most of human actions consist of complex temporal compositions of more simple actions. Action recognition tasks usually relies on complex handcrafted structures as features to represent the human action model. Convolutional Neural Nets (CNN) have shown to be a powerful tool that eliminate the need for designing handcrafted features. Usually, the output of the last layer in CNN (a layer before t...
متن کاملCNN-Based Automatic Urinary Particles Recognition
The urine sediment analysis of particles in microscopic images can assist physicians in evaluating patients with renal and urinary tract diseases. Manual urine sediment examination is labor-intensive, subjective and time-consuming, and the traditional automatic algorithms often extract the hand-crafted features for recognition. Instead of using the hand-crafted features, in this paper, we explo...
متن کاملClustering Algorithm for Human Behavior Recognition Based on Biosignal Analysis
Time series unsupervised clustering is accurate in various domains, and there is an increased interest in time series clustering algorithms for human behavior recognition. The authors have developed an algorithm for biosignals clustering, which captures the general morphology of a signal’s cycles in one mean wave. In this chapter, they further validate and consolidate it and make a quantitative...
متن کاملHuman Behavior Recognition Based on Axonometric Projections and PHOG Feature ⋆
Human behavior recognition has become a hot research topic in computer vision. In this paper, we propose an effective method to recognize human behaviors from sequences of depth maps, which provide additional body shape and motion information for behavior recognition. In our approach, we construct a novel difference motion history image, and propose axonometric projection to capture the target ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Computer Science and Engineering
سال: 2017
ISSN: 2475-8841
DOI: 10.12783/dtcse/smce2017/12438