Hypocoercivity and controllability in linear semi‐dissipative Hamiltonian ordinary differential equations and differential‐algebraic equations
نویسندگان
چکیده
Abstract For the classes of finite‐dimensional linear time‐invariant semi‐dissipative Hamiltonian ordinary differential equations and differential‐algebraic with constant coefficients, stability hypocoercivity are discussed related to concepts from control theory. On basis staircase forms, solution behavior is characterized connected index these evolution equations. The results applied two infinite‐dimensional flow problems.
منابع مشابه
Linear ordinary differential equations and Schubert calculus
In this short survey we recall some basic results and relations between the qualitative theory of linear ordinary differential equations with real time and the reality problems in Schubert calculus. We formulate a few relevant conjectures.
متن کاملFractals in Linear Ordinary Differential Equations
We prove the existence of fractal solutions to a class of linear ordinary differential equations.This reveals the possibility of chaos in the very short time limit of the evolution even of a linear one dimensional dynamical system. PACS Nos.: 02.30.Hq ; 47.53. +n
متن کاملGeneral linear methods for ordinary differential equations
Come with us to read a new book that is coming recently. Yeah, this is a new coming book that many people really want to read will you be one of them? Of course, you should be. It will not make you feel so hard to enjoy your life. Even some people think that reading is a hard to do, you must be sure that you can do it. Hard will be felt when you have no ideas about what kind of book to read. Or...
متن کاملHIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS II: Nonhomogeneous Equations
Because the presentation of this material in class will differ from that in the book, I felt that notes that closely follow the class presentation might be appreciated.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Mechanics
سال: 2021
ISSN: ['1521-4001', '0044-2267']
DOI: https://doi.org/10.1002/zamm.202100171