Hypoelliptic estimates for some linear diffusive kinetic equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Hypoelliptic Estimates for Some Kinetic Equations

We provide a simple overview of some hypoellipticity results with sharp indices for a class of kinetic equations and we outline a general strategy based on some geometrical properties.

متن کامل

Hypoelliptic Regularity in Kinetic Equations

We establish new regularity estimates, in terms of Sobolev spaces, of the solution f to a kinetic equation. The right-hand side can contain partial derivatives in time, space and velocity, as in classical averaging, and f is assumed to have a certain amount of regularity in velocity. The result is that f is also regular in time and space, and this is related to a commutator identity introduced ...

متن کامل

Uniform Schauder Estimates for Regularized Hypoelliptic Equations

In this paper we are concerned with a family of elliptic operators represented as sum of square vector fields: L = ∑m i=1X 2 i + ∆ in Rn, where ∆ is the Laplace operator, m < n, and the limit operator L = ∑m i=1X 2 i is hypoelliptic. Here we establish Schauder’s estimates, uniform with respect to the parameter , of solution of the approximated equation L u = f , using a modification of the lift...

متن کامل

Analysis of Asymptotic Preserving DG-IMEX Schemes for Linear Kinetic Transport Equations in a Diffusive Scaling

In this paper, some theoretical aspects will be addressed for the asymptotic preserving DG-IMEX schemes recently proposed in [10] for kinetic transport equations under a diffusive scaling. We will focus on the methods that are based on discontinuous Galerkin (DG) spatial discretizations with the P k polynomial space and a first order IMEX temporal discretization, and apply them to two linear mo...

متن کامل

Hypoelliptic estimates in radiative transfer

We derive the hypoelliptic estimates for a kinetic equation of the form ∂tf + k · ∇xf = (−∆d)h, for (t, x, k) ∈ R× R × S, where d ≥ 1, β > 0, Sd is the unit sphere in Rd+1 and ∆d is the Laplace-Beltrami operator on Sd. Such equations arise in the modeling of high frequency waves in random media with long-range correlations. Assuming some (fractional) Sobolev regularity in the momentum variable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journées Équations aux dérivées partielles

سال: 2010

ISSN: 0752-0360

DOI: 10.5802/jedp.66