Hypothesis Testing in High-Dimensional Regression Under the Gaussian Random Design Model: Asymptotic Theory

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Equivalence Theory for Nonparametric Regression With Random Design

This paper establishes the global asymptotic equivalence between the nonparametric regression with random design and the white noise under sharp smoothness conditions on an unknown regression or drift function. The asymptotic equivalence is established by constructing explicit equivalence mappings between the nonparametric regression and the white-noise experiments, which provide synthetic obse...

متن کامل

Hypothesis Testing for High-dimensional Sparse Binary Regression.

In this paper, we study the detection boundary for minimax hypothesis testing in the context of high-dimensional, sparse binary regression models. Motivated by genetic sequencing association studies for rare variant effects, we investigate the complexity of the hypothesis testing problem when the design matrix is sparse. We observe a new phenomenon in the behavior of detection boundary which do...

متن کامل

Confidence intervals and hypothesis testing for high-dimensional regression

Fitting high-dimensional statistical models often requires the use of non-linear parameter estimation procedures. As a consequence, it is generally impossible to obtain an exact characterization of the probability distribution of the parameter estimates. This in turn implies that it is extremely challenging to quantify the uncertainty associated with a certain parameter estimate. Concretely, no...

متن کامل

Regression Analysis under Inverse Gaussian Model: Repeated Observation Case

 Traditional regression analyses assume normality of observations and independence of mean and variance. However, there are many examples in science and Technology where the observations come from a skewed distribution and moreover there is a functional dependence between variance and mean. In this article, we propose a method for regression analysis under Inverse Gaussian model when th...

متن کامل

Model Selection in Gaussian Regression for High-dimensional Data

We consider model selection in Gaussian regression, where the number of predictors might be even larger than the number of observations. The proposed procedure is based on penalized least square criteria with a complexity penalty on a model size. We discuss asymptotic properties of the resulting estimators corresponding to linear and so-called 2k ln(p/k)-type nonlinear penalties for nearly-orth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2014

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2014.2343629