Ice Nucleation Activity of Graphene and Graphene Oxides
نویسندگان
چکیده
منابع مشابه
Mechanical properties of graphene oxides.
The mechanical properties, including the Young's modulus and intrinsic strength, of graphene oxides are investigated by first-principles computations. Structural models of both ordered and amorphous graphene oxides are considered and compared. For the ordered graphene oxides, the Young's modulus is found to vary from 380 to 470 GPa as the coverage of oxygen groups changes, respectively. The cor...
متن کاملNucleation of Graphene Layers on Magnetic Oxides: Co3O4(111) and Cr2O3(0001) from Theory and Experiment.
We report directly grown strongly adherent graphene on Co3O4(111) by carbon molecular beam epitaxy (C MBE) at 850 K and density functional theory (DFT) findings that the first graphene layer is reconstructed to fit the Co3O4 surface, while subsequent layers retain normal graphene structure. This adherence to the Co3O4 structure results from partial bonding of half the carbons to top oxygens of ...
متن کاملTwist-boat conformation in graphene oxides.
We have investigated the structural, electronic, and vibrational properties of graphene oxide based on first-principles density-functional calculations. A twist-boat conformation is identified as the energetically most favorable nonmetallic configuration for fully oxidized graphene. The calculated Raman G-band blue shift is in very good agreement with experimental observations. Our results prov...
متن کاملIce-assisted electron beam lithography of graphene.
We demonstrate that a low energy focused electron beam can locally pattern graphene coated with a thin ice layer. The irradiated ice plays a crucial role in the process by providing activated species that locally remove graphene from a silicon dioxide substrate. After patterning the graphene, the ice resist is easily removed by sublimation to leave behind a clean surface with no further process...
متن کاملFlame treatment of graphene oxides: cost-effective production of nanoporous graphene electrode for Lithium-ion batteries
A facile production of highly porous graphene foam by using flame treatment of graphene oxide (GO) is proposed. Highly porous architectures with randomly distributed micro-crack and micro-slit were produced due to the high temperature induced ruinous reduction and rapid expansion of GO. Synchronously, abundant oxygen-containing groups (OCGs) on GO sheets could be effectively removed after flame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry C
سال: 2018
ISSN: 1932-7447,1932-7455
DOI: 10.1021/acs.jpcc.7b10675