Ideal Codes Over Separable Ring Extensions
نویسندگان
چکیده
منابع مشابه
Constacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملOn Skew Cyclic Codes over a Finite Ring
In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.
متن کاملMDS codes over finite principal ideal rings
The purpose of this paper is to study codes over finite principal ideal rings. To do this, we begin with codes over finite chain rings as a natural generalization of codes over Galois rings GR(pe, l) (including Zpe). We give sufficient conditions on the existence of MDS codes over finite chain rings and on the existence of self-dual codes over finite chain rings. We also construct MDS self-dual...
متن کاملConstacyclic Codes over Finite Principal Ideal Rings
In this paper, we give an important isomorphism between contacyclic codes and cyclic codes,over finite principal ideal rings.Necessary and sufficient conditions for the existence of non-trivial cyclic self-dual codes over finite principal ideal rings are given.
متن کاملMulti-point codes over Kummer extensions
This paper is concerned with the construction of algebraic geometric codes defined from Kummer extensions. It plays a significant role in the study of such codes to describe bases for the Riemann-Roch spaces associated with totally ramified places. Along this line, we give an explicit characterization of Weierstrass semigroups and pure gaps. Additionally, we determine the floor of a certain typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2017
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2017.2682856