Identifiability of Gaussian structural equation models with equal error variances
نویسندگان
چکیده
منابع مشابه
Gaussian Process Structural Equation Models with Latent Variables
In a variety of disciplines such as social sciences, psychology, medicine and economics, the recorded data are considered to be noisy measurements of latent variables connected by some causal structure. This corresponds to a family of graphical models known as the structural equation model with latent variables. While linear non-Gaussian variants have been wellstudied, inference in nonparametri...
متن کاملIdentifiability of Dynamic Stochastic General Equilibrium Models with Covariance Restrictions
This article is concerned with identification problem of parameters of Dynamic Stochastic General Equilibrium Models with emphasis on structural constraints, so that the number of observable variables is equal to the number of exogenous variables. We derived a set of identifiability conditions and suggested a procedure for a thorough analysis of identification at each point in the parameters sp...
متن کاملStructural Identifiability of Dynamic Systems Biology Models
A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be a...
متن کاملNon-Gaussian Methods for Learning Linear Structural Equation Models
Special thanks to Aapo Hyvärinen, Patrik O. Hoyer and Takashi Washio. 2 Abstract • Linear structural equation models (linear SEMs) can be used to model data generating processes of variables. • We review a new approach to learn or estimate linear structural equation models. • The new estimation approach utilizes non-Gaussianity of data for model identification and uniquely estimates much wider...
متن کاملIdentifiability of Non-Gaussian Structural VAR Models for Subsampled and Mixed Frequency Time Series
Causal inference in multivariate time series is confounded by subsampling in time between the true causal scale and the observed data sampling rate. In practice, this presents challenges for inferring causal interaction between time series due to differences in sampling rates across time series and generally low sampling rates due to technological limitations. To determine instantaneous and lag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2013
ISSN: 1464-3510,0006-3444
DOI: 10.1093/biomet/ast043