Identification of transmissivity coefficients by mollification techniques. Part I: One-dimensional elliptic and parabolic problems
نویسندگان
چکیده
منابع مشابه
Second Order Multigrid Methods for Elliptic Problems with Discontinuous Coefficients on an Arbitrary Interface, I: One Dimensional Problems
In this paper we present a one dimensional second order accurate method to solve Elliptic equations with discontinuous coefficients on an arbitrary interface. Second order accuracy for the first derivative is obtained as well. The method is based on the Ghost Fluid Method, making use of ghost points on which the value is defined by suitable interface conditions. The multi-domain formulation is ...
متن کاملParabolic and Elliptic Equations with Vmo Coefficients
An Lp-theory of divergence and non-divergence form elliptic and parabolic equations is presented. The main coefficients are supposed to belong to the class V MOx, which, in particular, contains all functions independent of x. Weak uniqueness of the martingale problem associated with such equations is obtained.
متن کاملParabolic and Elliptic Systems with Vmo Coefficients
We consider second order parabolic and elliptic systems with leading coefficients having the property of vanishing mean oscillation (VMO) in the spatial variables. An Lq −Lp theory is established for systems both in divergence and non-divergence form. Higher order parabolic and elliptic systems are also discussed briefly.
متن کاملOn the one-dimensional parabolic obstacle problem with variable coefficients
This note is devoted to continuity results of the time derivative of the solution to the onedimensional parabolic obstacle problem with variable coefficients. It applies to the smooth fit principle in numerical analysis and in financial mathematics. It relies on various tools for the study of free boundary problems: blow-up method, monotonicity formulae, Liouville’s results. AMS Classification:...
متن کاملAnalysis of First-Order System Least Squares (FOSLS) for Elliptic Problems with Discontinuous Coefficients: Part I
First-order system least squares (FOSLS) is a recently developed methodology for solving partial differential equations. Among its advantages are that the finite element spaces are not restricted by the inf-sup condition imposed, for example, on mixed methods and that the least-squares functional itself serves as an appropriate error measure. This paper studies the FOSLS approach for scalar sec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1993
ISSN: 0898-1221
DOI: 10.1016/0898-1221(93)90172-r