Identities and bases in the hypoplactic monoid
نویسندگان
چکیده
This paper presents new results on the identities satisfied by hypoplactic monoid. We show how to embed monoid of any rank strictly greater than 2 (including infinite rank) into a direct product copies 2. confirms that all monoids or equal satisfy exactly same identities. then give complete characterization those identities, and prove variety generated has finite axiomatic rank, giving basis for it.
منابع مشابه
On the hypoplactic monoid
Cet article pr esente une etude combinatoire du mono de hypoplaxique. Apr es avoir rappel e les d eenitions classiques, nous exhibons un algorithme qui est l'analogue hypoplaxique de l'algorithme de Schensted puis nous donnons un certain nombre de propri et es int eressantes de ce mono de. Abstract This paper presents a combinatorial study of the hypoplactic monoid. After having recalled the ba...
متن کاملOn Grr Obner Bases in Monoid and Group Rings
Following Buchberger's approach to computing a Grr obner basis of a polynomial ideal in polynomial rings, a completion procedure for nitely generated right ideals in ZH] is given, where H is an ordered monoid presented by a nite, convergent semi{Thue system ((; T). Taking a nite set F ZH] we get a (possibly innnite) basis of the right ideal generated by F , such that using this basis we have un...
متن کاملOn Binomial Identities in Arbitrary Bases
We first extend the digital binomial identity as given by Nguyen et al. to an identity in an arbitrary base b, by introducing the b-ary binomial coefficients. Then, we study the properties of these coefficients such as their orthogonality, their link with Lucas’ theorem and their extension to multinomial coefficients. Finally, we analyze the structure of the corresponding b-ary Pascal-like tria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2021
ISSN: ['1532-4125', '0092-7872']
DOI: https://doi.org/10.1080/00927872.2021.1955901