Imbalance-Aware Uplift Modeling for Observational Data

نویسندگان

چکیده

Uplift modeling aims to model the incremental impact of a treatment on an individual outcome, which has attracted great interests researchers and practitioners from different communities. Existing uplift methods rely either data collected randomized controlled trials (RCTs) or observational is more realistic. However, we notice that data, it often case only small number subjects receive treatment, but finally infer much large group subjects. Such highly imbalanced common in various fields such as marketing medical rarely handled by existing works. In this paper, theoretically quantitatively prove representative methods, transformed outcome (TOM) doubly robust (DR), suffer bias deviation datasets with skewed propensity scores, mainly because they are proportional reciprocal score. To reduce dataset, propose imbalance-aware (IAUM) method via constructing proxy adaptively combines estimator imputed effects based We IAUM can obtain better bias-variance trade-off than dataset. conduct extensive experiments synthetic dataset two real-world datasets, experimental results well demonstrate superiority our over state-of-the-art.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uplift modeling for clinical trial data

Traditional classification methods predict the class probability distribution conditional on a set of predictor variables. Uplift modeling, in contrast, tries to predict the difference between class probabilities in the treatment group (on which some action has been taken) and the control group (not subjected to the action) such that the model predicts the net effect of the action. Such an appr...

متن کامل

Context-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network

Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...

متن کامل

Pessimistic Uplift Modeling

Uplift modeling is a machine learning technique that aims to model treatment effects heterogeneity. It has been used in business and health sectors to predict the effect of a specific action on a given individual. Despite its advantages, uplift models show high sensitivity to noise and disturbance, which leads to unreliable results. In this paper we show different approaches to address the prob...

متن کامل

modeling loss data by phase-type distribution

بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...

Uplift Modeling in Direct Marketing

Marketing campaigns directed to randomly selected customers often generate huge costs and a weak response. Moreover, such campaigns tend to unnecessarily annoy customers and make them less likely to answer to future communications. Precise targeting of marketing actions can potentially results in a greater return on investment. Usually, response models are used to select good targets. They aim ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2022

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v36i6.20581