Immersed finite element methods for 4th order differential equations
نویسندگان
چکیده
منابع مشابه
Adaptive finite element methods for differential equations
Gegenstand des Buches ist die Dual Weighted Residual method (DWR), ein sehr effizientes numerisches Verfahren zur Behandlung einer großen Klasse von variationell formulierten Differentialgleichungen. Das numerische Verfahren ist adaptiv, d.h. es konstruiert eigenständig eine Folge von Approximationen für eine gegebene Fragestellung. Typische Fragestellungen sind die Bestimmung gewichteter Mitte...
متن کاملDynamic Finite Element Methods for Second Order Parabolic Equations
Dynamic nite element schemes are analyzed for second order parabolic problems. These schemes can employ di erent nite element spaces at di erent time levels in order to capture time-changing localized phenomena, such as moving sharp fronts or layers. The dynamically changing grids and interpolation polynomials are necessary and essential to many large-scale transient problems. Standard, charact...
متن کاملSpace-time Finite Element Methods for Second-order Hyperbolic Equations*
Space-time finite element methods are presented to accurately solve elastodynamics problems that include sharp gradients due to propagating waves. The new methodology involves finite element discretization of the time domain as well as the usual finite element discretization of the spatial domain. Linear stabilizing mechanisms are included which do not degrade the accuracy of the space-time fin...
متن کاملPrimal Hybrid Finite Element Methods for 2nd Order Elliptic Equations
The paper is devoted to the construction of finite element methods for 2nd order elliptic equations based on a primal hybrid variational principle. Optimal error bounds are proved. As a corollary, we obtain a general analysis of nonconforming finite element methods.
متن کاملAdaptive Finite Element Methods for Partial Differential Equations
The numerical simulation of complex physical processes requires the use of economical discrete models. This lecture presents a general paradigm of deriving a posteriori error estimates for the Galerkin finite element approximation of nonlinear problems. Employing duality techniques as used in optimal control theory the error in the target quantities is estimated in terms of weighted ‘primal’ an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2011
ISSN: 0377-0427
DOI: 10.1016/j.cam.2011.01.041