Impacts of Imidazolate Ligand on Performance of Zeolitic-Imidazolate Framework-Derived Oxygen Reduction Catalysts
نویسندگان
چکیده
منابع مشابه
Carbon dioxide sensitivity of zeolitic imidazolate frameworks.
Zeolitic imidazolate frameworks of zinc, cobalt, and cadmium, including the framework ZIF-8 commercially sold as Basolite Z1200, exhibit surprising sensitivity to carbon dioxide under mild conditions. The frameworks chemically react with CO2 in the presence of moisture or liquid water to form carbonates. This effect, which has been previously not reported in metal-organic framework chemistry, p...
متن کاملMechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework.
Mechanochemical dry conversion that only uses zinc oxide and an imidazole ligand proved to be effective and reliable for fabrication of a zeolitic imidazolate framework with a polycrystalline grain boundary and a core-shell structure. The zinc oxide crystals are converted into a zeolitic imidazolate framework to a depth of approx. 10 nm below the surface.
متن کاملReversed Crystal Growth of RHO Zeolitic Imidazolate Framework (ZIF)
RHO zeolitic imidazolate framework (ZIF), Zn1.33 (O.OH)0.33 (nim)1.167 (pur), crystals with a rhombic dodecahedral morphology were synthesized by a solvothermal process. The growth of the crystals was studied over time using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD) and Brunauer-Emmett-Teller (BET) analyses, and a reversed crysta...
متن کاملHydrogen storage in a prototypical zeolitic imidazolate framework-8.
Zeolitic imidazolate frameworks (ZIFs) are a new class of nanoporous compounds which consist of tetrahedral clusters of MN4 (M ) Co, Cu, Zn, etc.) linked by simple imidazolate ligands.1,2 As a subfamily of metal-organic frameworks (MOFs), ZIFs exhibit the tunable pore size and chemical functionality of classical MOFs. At the same time, they possess the exceptional chemical stability and rich st...
متن کاملWater oxidation electrocatalysis by a zeolitic imidazolate framework.
The search for efficient water oxidation catalysts (WOCs) is of paramount importance in energy and environmental fields, but there exists no good non-noble catalyst that works under acidic and alkaline conditions. Intensive investigations have recently focused on cobalt based complex/solid catalysts. Here, we have introduced a new type of cobalt-based WOC made of metal-organic frameworks where ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Energy Letters
سال: 2019
ISSN: 2380-8195,2380-8195
DOI: 10.1021/acsenergylett.9b01740