Implicit numerical schemes for generalized heat conduction equations
نویسندگان
چکیده
منابع مشابه
Splitting schemes for hyperbolic heat conduction equation
Rapid processes of heat transfer are not described by the standard heat conduction equation. To take into account a finite velocity of heat transfer, we use the hyperbolic model of heat conduction, which is connected with the relaxation of heat fluxes. In this case, the mathematical model is based on a hyperbolic equation of second order or a system of equations for the temperature and heat flu...
متن کاملImplicit-Explicit Schemes for BGK Kinetic Equations
In this work a new class of numerical methods for the BGK model of kinetic equations is presented. In principle, schemes of any order of accuracy in both space and time can be constructed with this technique. The methods proposed are based on an explicit-implicit time discretization. In particular the convective terms are treated explicitly, while the source terms are implicit. In this fashion ...
متن کاملDifference schemes for numerical solutions of lagging models of heat conduction
Different non-Fourier models of heat conduction have recently been considered in the modeling of microscale heat transfer in engineering and biomedical heat transfer problems. The dual-phase-lagging model, incorporating time lags in the heat flux and the temperature gradient, and some of its particular cases and approximations, result in heat conduction modeling equations in the form of retarde...
متن کاملa numerical solution for an inverse heat conduction problem
in this paper, we demonstrate the existence and uniqueness a semianalytical solution of an inverse heat conduction problem (ihcp) in the form: ut = uxx in the domain d = {(x, t)| 0 < x < 1, 0 < t t}, u(x, t) = f(x), u(0, t) = g(t), and ux(0, t) = p(t), for any 0 t t. some numerical experiments are given in the final section.
متن کاملNumerical Schemes for Fractional Ordinary Differential Equations
Fractional calculus, which has almost the same history as classic calculus, did not attract enough attention for a long time. However, in recent decades, fractional calculus and fractional differential equations become more and more popular because of its powerful potential applications. A large number of new differential equations (models) that involve fractional calculus are developed. These ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Heat and Mass Transfer
سال: 2018
ISSN: 0017-9310
DOI: 10.1016/j.ijheatmasstransfer.2018.06.067