Improved stability of optimal traffic paths
نویسندگان
چکیده
منابع مشابه
Improved stability of optimal traffic paths
Models involving branched structures are employed to describe several supply-demand systems such as the structure of the nerves of a leaf, the system of roots of a tree and the nervous or cardiovascular systems. Given a flow (traffic path) that transports a given measure μ− onto a target measure μ, along a 1dimensional network, the transportation cost per unit length is supposed in these models...
متن کاملStability of directed Min-Max optimal paths
The stability of directed Min-Max optimal paths in cases of change in the random media is studied. Using analytical arguments it is shown that when small perturbations are applied to the weights of the bonds of the lattice, the probability that the new Min-Max optimal path is different from the original Min-Max optimal path is proportional to t‖ , where t is the size of the lattice, and ν‖ is t...
متن کاملstability and attraction domains of traffic equilibria in day-to-day dynamical system formulation
در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...
Traffic Network Optimal Scheduling Paths Based on Time Intervals Division
In order to make the network model was more fitting the actual condition of city traffic, this paper presents a dynamic transportation network model based on the traffic time division, and designs improved Dijkstra algorithm to solve the city traffic paths planning problem. Dijkstra algorithm is a typical singlesource shortest path algorithm is used to calculate a node to all other nodes in the...
متن کاملDyck paths , Motzkin paths and traffic jams
It has recently been observed that the normalization of a one-dimensional out-of-equilibrium model, the asymmetric exclusion process (ASEP) with random sequential dynamics, is exactly equivalent to the partition function of a two-dimensional lattice path model of one-transit walks, or equivalently Dyck paths. This explains the applicability of the Lee–Yang theory of partition function zeros to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2018
ISSN: 0944-2669,1432-0835
DOI: 10.1007/s00526-017-1299-1