Improving Topic Coherence Using Entity Extraction Denoising

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Topic Coherence with Regularized Topic Models

Topic models have the potential to improve search and browsing by extracting useful semantic themes from web pages and other text documents. When learned topics are coherent and interpretable, they can be valuable for faceted browsing, results set diversity analysis, and document retrieval. However, when dealing with small collections or noisy text (e.g. web search result snippets or blog posts...

متن کامل

Semi-supervised Extraction of Entity Aspects Using Topic Models

Information extraction techniques (such as Named Entity Recognition) have long been used to extract useful pieces of information from text. The types of information to be extracted are generally fixed and well defined (e.g., names of people, organizations, etc.). However in some cases, the user goal is more abstract and information types cannot be narrowly defined. For example, a reader of onli...

متن کامل

Text Segmentation with Topic Modeling and Entity Coherence

This paper describes a system which uses entity and topic coherence for improved Text Segmentation (TS) accuracy. First, Linear Dirichlet Allocation (LDA) algorithm was used to obtain topics for sentences in the document. We then performed entity mapping across a window in order to discover the transition of entities within sentences. We used the information obtained to support our LDA-based bo...

متن کامل

Entity Set Expansion using Topic information

This paper proposes three modules based on latent topics of documents for alleviating “semantic drift” in bootstrapping entity set expansion. These new modules are added to a discriminative bootstrapping algorithm to realize topic feature generation, negative example selection and entity candidate pruning. In this study, we model latent topics with LDA (Latent Dirichlet Allocation) in an unsupe...

متن کامل

Topic Modeling for Entity Linking using Keyphrase

This paper proposes an Entity Linking system that applies a topic modeling ranking. We apply a novel approach in order to provide new relevant elements to the model. These elements are keyphrases related to the queries and gathered from a huge Wikipedia-based knowledge resource.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Prague Bulletin of Mathematical Linguistics

سال: 2018

ISSN: 1804-0462

DOI: 10.2478/pralin-2018-0004