Incremental Decision Rules Algorithm: A Probabilistic and Dynamic Approach to Decisional Data Stream Problems

نویسندگان

چکیده

Data science is currently one of the most promising fields used to support decision-making process. Particularly, data streams can give these supportive systems an updated base knowledge that allows experts make decisions with models. Incremental Decision Rules Algorithm (IDRA) proposes a new incremental decision-rule method based on classical ID3 approach generating and updating rule set. This algorithm novel designed fit Support System (DSS) whose motivation accurate responses in affordable time for decision situation. work includes several experiments compare IDRA static but optimized (CREA) adaptive VFDR. A battery scenarios different error types rates are proposed three algorithms. improves accuracies VFDR CREA common cases simulated this work. In particular, technique has proven perform better those no error, low noise, or high-impact concept drifts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Discovering probabilistic decision rules

Techniques to generate probabilistic decision rules are presented. These techniques are used to forecast or measure the competitiveness of companies. Rules estimating the competitiveness of companies are discovered. The generated rules are then applied to forecast the competitiveness of previously unseen companies. Experimental results show that probabilistic decision rule technique outperforms...

متن کامل

Incremental Learning Algorithm for Dynamic Data Streams

The recent advances in hardware and software have enabled the capture of different measurements of data in a wide range of fields. These measurements are generated continuously and in a very high fluctuating data rates. Examples include sensor networks, web logs, and computer network traffic. The storage, querying and mining of such data sets are highly computationally challenging tasks. Mining...

متن کامل

Dynamic programming approach to optimization of approximate decision rules

This paper is devoted to the study of an extension of dynamic programming approach which allows sequential optimization of approximate decision rules relative to the length and coverage. We introduce an uncertainty measure R(T) which is the number of unordered pairs of rows with different decisions in the decision table T. For a nonnegative real number b, we consider b-decision rules that local...

متن کامل

Joint dynamic probabilistic constraints with projected linear decision rules

We consider multistage stochastic linear optimization problems combining joint dynamic probabilistic constraints with hard constraints. We develop a method for projecting decision rules onto hard constraints of wait-and-see type. We establish the relation between the original (infinite-dimensional) problem and approximating problems working with projections from different subclasses of decision...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10010016