Incremental planning of multi-gravity assist trajectories
نویسندگان
چکیده
منابع مشابه
Multiple Gravity Assist Trajectories
Multiple gravity assist (MGA) trajectories represent a particular class of space trajectories in which a spacecraft exploits the encounter with one or more celestial bodies to change its velocity vector; they have been essential to reach high v targets with low propellant consumption. The search for optimal transfer trajectories can be formulated as a mixed combinatorial-continuous global opti...
متن کاملDesign of Low-thrust Multi-gravity Assist Trajectories to Europa
This paper presents the design of a mission to Europa using solar electric propulsion as main source of thrust. A direct transcription method based on Finite Elements in Time was used for the design and optimisation of the entire low-thrust gravity assist transfer from the Earth to Europa. Prior to that, a global search algorithm was used to generate a set of suitable first guess solutions for ...
متن کاملOn the Preliminary Design of Multiple Gravity-Assist Trajectories
In this paper the preliminary design of multiple gravity-assist trajectories is formulated as a global optimization problem. An analysis of the structure of the solution space reveals a strong multimodality, which is strictly dependent on the complexity of the model. On the other hand it is shown how an oversimplification could prevent finding potentially interesting solutions. A trajectory mod...
متن کاملDesign of Low-Thrust Gravity Assist Trajectories to Europa
This paper presents the design of a mission to Europa using solar electric propulsion as main source of thrust. A direct transcription method based on Finite Elements in Time was used for the design and optimisation of the entire low-thrust gravity assist transfer from the Earth to Europa. Prior to that, a global search algorithm was used to generate a set of suitable first guess solutions for ...
متن کاملAn Efficient Pruning Technique for the Global Optimisation of Multiple Gravity Assist Trajectories
With application to the specific problem of multiple gravity assist trajectory design, a deterministic search space pruning algorithm is developed that displays both polynomial time and space complexity. This is shown empirically to achieve search space reductions of greater than six orders of magnitude, thus reducing significantly the complexity of the subsequent optimisation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Astronautica
سال: 2015
ISSN: 0094-5765
DOI: 10.1016/j.actaastro.2015.05.033