Induced norms, states, and numerical ranges

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced Norms, States, and Numerical Ranges

It is shown that two induced norms are the same if and only if the corresponding norm numerical ranges or radii are the same, which in turn is equivalent to the vector states and mixed states arising from the norms being the same. The proofs depend on an auxiliary result of independent interest which concerns when two closed convex sets in a topological vector space are multiples of each other.

متن کامل

Spectra, Norms and Numerical Ranges of Generalized Quadratic Operators

A bounded linear operator acting on a Hilbert space is a generalized quadratic operator if it has an operator matrix of the form [ aI cT dT ∗ bI ] . It reduces to a quadratic operator if d = 0. In this paper, spectra, norms, and various kinds of numerical ranges of generalized quadratic operators are determined. Some operator inequalities are also obtained. In particular, it is shown that for a...

متن کامل

Corners of multidimensional numerical ranges

The n-dimensional numerical range of a densely defined linear operator T on a complex Hilbert space H is the set of vectors in Cn of the form (〈Te1, e1〉, . . . , 〈Ten, en〉), where e1, . . . , en is an orthonormal system in H, consisting of vectors from the domain of T . We prove that the components of every corner point of the n-dimensional numerical range are eigenvalues of T .

متن کامل

Numerical ranges of composition operators

Composition operators on the Hilbert Hardy space of the unit disk are considered. The shape of their numerical range is determined in the case when the symbol of the composition operator is a monomial or an inner function fixing 0. Several results on the numerical range of composition operators of arbitrary symbol are obtained. It is proved that 1 is an extreme boundary point if and only if 0 i...

متن کامل

Higher numerical ranges of matrix polynomials

 Let $P(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. In this paper, some algebraic and geometrical properties of the $k$-numerical range of $P(lambda)$ are investigated. In particular, the relationship between the $k$-numerical range of $P(lambda)$ and the $k$-numerical range of its companion linearization is stated. Moreover, the $k$-numerical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2003

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-03-07213-7