Inequalities and bounds for generalized complete elliptic integrals

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities and bounds for elliptic integrals

Computable lower and upper bounds for the symmetric elliptic integrals and for Legendre’s incomplete integral of the first kind are obtained. New bounds are sharper than those known earlier. Several inequalities involving integrals under discussion are derived. © 2007 Elsevier Inc. All rights reserved.

متن کامل

Monotonicity, convexity, and inequalities for the generalized elliptic integrals

We provide the monotonicity and convexity properties and sharp bounds for the generalized elliptic integrals [Formula: see text] and [Formula: see text] depending on a parameter [Formula: see text], which contains an earlier result in the particular case [Formula: see text].

متن کامل

Integrals involving complete elliptic integrals

We give a closed-form evaluation of a number of Erd elyi-Kober fractional integrals involving elliptic integrals of the rst and second kind, in terms of the 3F2 generalized hypergeometric function. Reduction formulae for 3F2 enable us to simplify the solutions for a number of particular cases. c © 1999 Elsevier Science B.V. All rights reserved.

متن کامل

Asymptotic Formulas for Generalized Elliptic-type Integrals

Epstein-Hubbell [6] elliptic-type integrals occur in radiation field problems. The object of the present paper is to consider a unified form of different elliptic-type integrals, defined and developed recently by several authors. We obtain asymptotic formulas for the generalized elliptic-type integrals. Keywords—Elliptic-type Integrals, Hypergeometric Functions, Asymptotic Formulas.

متن کامل

Some Bounds for the Complete Elliptic Integrals of the First and Second Kinds

In the article, the complete elliptic integrals of the first and second kinds are bounded by using the power series expansions of some functions, the celebrated Wallis inequality, and an integral inequality due to R. P. Agarwal, P. Cerone, S. S. Dragomir and F. Qi. Mathematics subject classification (2010): 26D15, 33C75, 33E05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2011

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2010.06.060