Inequalities for some integrals involving modified Bessel functions
نویسندگان
چکیده
منابع مشابه
Some Integrals Involving Bessel Functions Some Integrals Involving Bessel Functions
A number of new definite integrals involving Bessel functions are presented. These have been derived by finding new integral representations for the product of two Bessel functions of different order and argument in terms of the generalized hypergeometric function with subsequent reduction to special cases. Connection is made with Weber's second exponential integral and Laplace transforms of pr...
متن کاملSome Inequalities for Modified Bessel Functions
We denote by Iν and Kν the Bessel functions of the first and third kind, respectively. Motivated by the relevance of the function wν t t Iν−1 t /Iν t , t > 0, in many contexts of applied mathematics and, in particular, in some elasticity problems Simpson and Spector 1984 , we establish new inequalities for Iν t /Iν−1 t . The results are based on the recurrence relations for Iν and Iν−1 and the ...
متن کاملInequalities for Integrals of Modified Bessel Functions and Expressions Involving Them
Simple inequalities are established for some integrals involving the modified Bessel functions of the first and second kind. In most cases, we show that we obtain the best possible constant or that our bounds are tight in certain limits. We apply these inequalities to obtain uniform bounds for several expressions involving integrals of modified Bessel functions. Such expressions occur in Stein’...
متن کاملSome Definite Integrals Involving Algebraic, Trigonometric and Bessel Functions
Some defin ite analytic integrals involving algebraic, trigonometric and Bessel functions which are needed in some electromagnetic calculations are proposed. The mathematical expansions are based on Mathematica (Wolfram) software and on some well known formulas. The agreement between the present expansion results and the numerical evaluation results is excellent.
متن کاملInequalities Involving Generalized Bessel Functions
Let up denote the normalized, generalized Bessel function of order p which depends on two parameters b and c and let λp(x) = up(x), x ≥ 0. It is proven that under some conditions imposed on p, b, and c the Askey inequality holds true for the function λp , i.e., that λp(x) +λp(y) ≤ 1 +λp(z), where x, y ≥ 0 and z = x + y. The lower and upper bounds for the function λp are also established.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2019
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/14433