Infinite group-graded rings, rings of endomorphisms, and localization
نویسندگان
چکیده
منابع مشابه
Group - Graded Rings and Duality
We give an alternative construction of the duality between finite group actions and group gradings on rings which was shown by Cohen and Montgomery in [1]. This duality is then used to extend known results on skew group rings to corresponding results for large classes of group-graded rings. Finally we modify the construction slightly to handle infinite groups. Introduction. In the first section...
متن کاملGraded Rings and Modules
1 Definitions Definition 1. A graded ring is a ring S together with a set of subgroups Sd, d ≥ 0 such that S = ⊕ d≥0 Sd as an abelian group, and st ∈ Sd+e for all s ∈ Sd, t ∈ Se. One can prove that 1 ∈ S0 and if S is a domain then any unit of S also belongs to S0. A homogenous ideal of S is an ideal a with the property that for any f ∈ a we also have fd ∈ a for all d ≥ 0. A morphism of graded r...
متن کاملStrongly clean triangular matrix rings with endomorphisms
A ring $R$ is strongly clean provided that every element in $R$ is the sum of an idempotent and a unit that commutate. Let $T_n(R,sigma)$ be the skew triangular matrix ring over a local ring $R$ where $sigma$ is an endomorphism of $R$. We show that $T_2(R,sigma)$ is strongly clean if and only if for any $ain 1+J(R), bin J(R)$, $l_a-r_{sigma(b)}: Rto R$ is surjective. Furt...
متن کاملEndomorphisms of Polynomial Rings and Jacobians
The Jacobian Conjecture is established : If f1, · · · , fn be elements in a polynomial ring k[X1, · · · , Xn] over a field k of characteristic zero such that det(∂fi/∂Xj) is a nonzero constant, then k[f1, · · · , fn] = k[X1, · · · , Xn]. Let k be an algebraically closed field, let k be an affine space of dimension n over k and let f : k −→ k be a morphism of algebraic varieties. Then f is given...
متن کاملSemisimple Strongly Graded Rings
Let G be a finite group and R a strongly G-graded ring. The question of when R is semisimple (meaning in this paper semisimple artinian) has been studied by several authors. The most classical result is Maschke’s Theorem for group rings. For crossed products over fields there is a satisfactory answer given by Aljadeff and Robinson [3]. Another partial answer for skew group rings was given by Al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1989
ISSN: 0022-4049
DOI: 10.1016/0022-4049(89)90130-8