Infinite tensor products of upper triangular matrix algebras.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-additive Lie centralizer of infinite strictly upper triangular matrices

‎Let $mathcal{F}$ be an field of zero characteristic and $N_{infty‎}(‎mathcal{F})$ be the algebra of infinite strictly upper triangular‎ ‎matrices with entries in $mathcal{F}$‎, ‎and $f:N_{infty}(mathcal{F}‎)rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $‎N_{infty }(mathcal{F})$; that is‎, ‎a map satisfying that $f([X,Y])=[f(X),Y]$‎ ‎for all $X,Yin N_{infty}(mathcal{F})...

متن کامل

Derived Equivalent Mates of Triangular Matrix Algebras

A triangular matrix algebra over a field k is defined by a triplet (R, S, M) where R and S are k-algebras and RMS is an SR-bimodule. We show that if R, S and M are finite dimensional and the global dimensions of R and S are finite, then the triangular matrix algebra corresponding to (R, S, M) is derived equivalent to the one corresponding to (S, R, DM), where DM = Homk(M, k) is the dual of M , ...

متن کامل

Mixing of the Upper Triangular Matrix Walk

We study a natural random walk over the upper triangular matrices, with entries in the field Z2, generated by steps which add row i + 1 to row i. We show that the mixing time of the lazy random walk is O(n) which is optimal up to constants. Our proof makes key use of the linear structure of the group and extends to walks on the upper triangular matrices over the fields Zq for q prime.

متن کامل

On Iterated Twisted Tensor Products of Algebras

We introduce and study the definition, main properties and applications of iterated twisted tensor products of algebras, motivated by the problem of defining a suitable representative for the product of spaces in noncommutative geometry. We find conditions for constructing an iterated product of three factors, and prove that they are enough for building an iterated product of any number of fact...

متن کامل

Tensor Products of Leavitt Path Algebras

We compute the Hochschild homology of Leavitt path algebras over a field k. As an application, we show that L2 and L2 ⊗ L2 have different Hochschild homologies, and so they are not Morita equivalent; in particular they are not isomorphic. Similarly, L∞ and L∞ ⊗ L∞ are distinguished by their Hochschild homologies and so they are not Morita equivalent either. By contrast, we show that K-theory ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1989

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-12284