Infinitely many solutions for Schrödinger–Kirchhoff-type equations involving indefinite potential
نویسندگان
چکیده
منابع مشابه
Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator
By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf
متن کاملExistence of infinitely many solutions for coupled system of Schrödinger-Maxwell's equations
متن کامل
A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS
The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...
متن کاملInfinitely Many Solutions for a Class of Sublinear Schrödinger Equations
where V : R → R and f : R × R → R. In the past several decades, the existence and multiplicity of nontrivial solutions for problem (1.1) have been extensively investigated in the literature with the aid of critical point theory and variational methods. Many papers deal with the autonomous case where the potential V and the nonlinearity f are independent of x, or with the radially symmetric case...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations
سال: 2017
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2017.1.58