Infinity of Subharmonics for Asymmetric Duffing Equations with the Lazer–Leach–Dancer Condition

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinity of subharmonics for Duffing equations with convex and oscillatory nonlinearities

*Correspondence: [email protected] 2School of Mathematical Sciences, Soochow University, Suzhou, 215006, China Full list of author information is available at the end of the article Abstract The existence of infinity of subharmonics for Duffing equations with convex and oscillatory nonlinearities is shown. This result is a corollary of two theorems. These theorems, one for a weak sub-quadratic...

متن کامل

Semilinear Equations in R N Without Condition at Infinity

In this paper we establish that some nonlinear elliptic (and parabolic) problems are well posed in all of R N without prescribing the behavior at infinity. A typical example is the following: Let 1 < p < oo. For every f ~ Laloc(R N) there is a unique u ~ L~o~(R N) satisfying Au + lulP-Xu = f ( x ) on R N.

متن کامل

Duffing equations with cubic and quintic nonlinearities

In this study, an accurate analytical solution for Duffing equations with cubic and quintic nonlinearities is obtainedusing theHomotopyAnalysisMethod (HAM) andHomotopy Pade technique. Novel and accurate analytical solutions for the frequency and displacement are derived. Comparison between the obtained results andnumerical solutions shows that only the first order approximation of the Homotopy ...

متن کامل

Boundedness for Semilinear Duffing Equations at Resonance

In this paper, we prove the boundedness of all solutions for the equation x + n 2 x + φ(x) + g (x)q(t) = 0, where n ∈ N, q(t) = q(t + 2π), φ(x) and g(x) are bounded.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2001

ISSN: 0022-0396

DOI: 10.1006/jdeq.2000.3847