Inner spectral radius of positive operator matrices
نویسندگان
چکیده
منابع مشابه
Spectral radius, symmetric and positive matrices
If ρ(A) > 1, then lim n→∞ ‖A‖ =∞. Proof. Recall that A = CJC−1 for a matrix J in Jordan normal form and regular C, and that A = CJnC−1. If ρ(A) = ρ(J) < 1, then J converges to the 0 matrix, and thus A converges to the zero matrix as well. If ρ(A) > 1, then J has a diagonal entry (J)ii = λ n for an eigenvalue λ such that |λ| > 1, and if v is the i-th column of C and v′ the i-th row of C−1, then ...
متن کاملFurther inequalities for operator space numerical radius on 2*2 operator matrices
We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. These inequalities contain some upper and lower bounds for operator space numerical radius.
متن کاملOn the spectral radius of nonnegative matrices
We give lower bounds for the spectral radius of nonnegative matrices and nonnegative symmetric matrices, and prove necessary and sufficient conditions to achieve these bounds.
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Journal of Mathematical Analysis
سال: 2008
ISSN: 1735-8787
DOI: 10.15352/bjma/1240336278