Integer points in backward orbits

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grand Orbits of Integer Polynomials

Let K be a number field and set R = OK , the ring of integers in K. We determine all polynomials f ∈ R[X] and all α ∈ R for which the grand orbit {β ∈ K : f(β) = f(α) for some n,m ≥ 0} contains infinitely many elements of R which are not in the forward orbit {f(α) : n ≥ 0}.

متن کامل

On integer points in polyhedra

We give an upper bound on the number of vertices of PI, the integer hull of a polyhedron P, in terms of the dimension n of the space, the number m of inequalities required to describe P, and the size ~ of these inequalities. For fixed n the bound is O(mn~n-1). We also describe an algorithm which determines the number of integer points in a polyhedron to within a multiplicative factor of 1 qE in...

متن کامل

Integer Points in Arithmetic Sequences

We present a dynamical analog of the Mordell-Lang conjecture for integral points. We are able to prove this conjecture in the case of endomorphisms of semiabelian varieties.

متن کامل

Integer Sequences and Periodic Points

Arithmetic properties of integer sequences counting periodic points are studied, and applied to the case of linear recurrence sequences, Bernoulli numerators, and Bernoulli denominators.

متن کامل

Integer Points in a Parameterised Polyhedron

The classical parameterised integer feasibility problem is as follows. Given a rational matrix A ∈Q and a rational polyhedronQ ⊆R , decide, whether there exists a point b ∈Q such that Ax6 b is integer infeasible. Ourmain result is a polynomial algorithm to solve a slightly more general parameterised integer feasibility problem if the number n of columns of A is fixed. This extends a result of K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2011

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2011.01.005