Integrable non-linear ? models with fermions
نویسندگان
چکیده
منابع مشابه
Integrable models for confined fermions: applications to metallic grains
We study integrable models for electrons in metals when the single particle spectrum is discrete. The electron-electron interactions are BCS-like pairing, Coulomb repulsion, and spin exchange coupling. These couplings are, in general, nonuniform in the sense that they depend on the levels occupied by the interacting electrons. By using the realization of spin 1/2-operators in terms of electrons...
متن کاملHyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales
This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem is used for obtaining existence and uniqueness of solutions. By means of abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish Hyers-Ulam stabi...
متن کاملLoop calculations in quantum mechanical non-linear sigma models with fermions and applications to anomalies
We construct the path integral for one-dimensional non-linear sigma models, starting from a given Hamiltonian operator and states in a Hilbert space. By explicit evaluation of the discretized propagators and vertices we find the correct Feynman rules which differ from those often assumed. These rules, which we previously derived in bosonic systems [1], are now extended to fermionic systems. We ...
متن کاملStability of Non-Linear Integrable Accelerator
The stability of non-linear Integrable Optics Test Accelerator (IOTA) model developed in [1] was tested. The area of the stable region in transverse coordinates and the maximum attainable tune spread were found as a function of non-linear lens strength. Particle loss as a function of turn number was analyzed to determine whether a dynamic aperture limitation present in the system. The system wa...
متن کاملScalar Non-linear Conservation Laws with Integrable Boundary Data
We consider the initial-boundary value problem for a scalar non-linear conservation law u t + f(u)] x = 0; u(0; x) = u(x); u(; 0) = ~ u(t); () on the domain = f(t; x) 2 R 2 : t 0; x 0g. Here u = u(t; x) is the state variable, u; ~ u are integrable (possibly unbounded) initial and boundary data, and f is assumed to be strictly convex and superlinear. We rst derive an explicit formula for a solut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 1986
ISSN: 0010-3616,1432-0916
DOI: 10.1007/bf01210796