Integrable semi-discretization of a multi-component short pulse equation
نویسندگان
چکیده
منابع مشابه
Se p 20 04 The short pulse equation is integrable
We prove that the Schäfer–Wayne short pulse equation (SPE) which describes the propagation of ultra-short optical pulses in nonlinear media is integrable. First, we discover a Lax pair of the SPE which turns out to be of the Wadati–Konno–Ichikawa type. Second, we construct a chain of transformations which relates the SPE with the sine-Gordon equation.
متن کاملAn integrable semi-discretization of the Camassa-Holm equation and its determinant solution
Abstract. An integrable semi-discretization of the Camassa-Holm equation is presented. The keys of its construction are bilinear forms and determinant structure of solutions of the CH equation. Determinant formulas of N-soliton solutions of the continuous and semi-discrete Camassa-Holm equations are presented. Based on determinant formulas, we can generate multi-soliton, multi-cuspon and multi-...
متن کاملIntegrable semi-discretization of the coupled nonlinear Schrödinger equations
A system of semi-discrete coupled nonlinear Schrödinger equations is studied. To show the complete integrability of the model with multiple components, we extend the discrete version of the inverse scattering method for the single-component discrete nonlinear Schrödinger equation proposed by Ablowitz and Ladik. By means of the extension, the initial-value problem of the model is solved. Further...
متن کاملIntegrable discretizations and self-adaptive moving mesh method for a coupled short pulse equation
In the present paper, integrable semi-discrete and fully discrete analogues of a coupled short pulse (CSP) equation are constructed. The key to the construction are the bilinear forms and determinant structure of the solutions of the CSP equation. We also construct N-soliton solutions for the semi-discrete and fully discrete analogues of the CSP equations in the form of Casorati determinants. I...
متن کاملRigorous justification of the short-pulse equation
We prove that the short-pulse equation, which is derived from a quasilinear Klein–Gordon equation with formal asymptotic methods, can be rigorously justified. The justification procedure applies to small-norm solutions of the short-pulse equation. Although the small-norm solutions exist for infinite times and include modulated pulses and their elastic interactions, the error bound for arbitrary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2015
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4916895