Integrating Multiplex Single-Molecule Pull-Down (SiMPull) Data and Computational Modeling to Understand EGFR Signaling
نویسندگان
چکیده
منابع مشابه
Single-Molecule Pull-Down FRET to Dissect the Mechanisms of Biomolecular Machines.
Spliceosomes are multimegadalton RNA-protein complexes responsible for the faithful removal of noncoding segments (introns) from pre-messenger RNAs (pre-mRNAs), a process critical for the maturation of eukaryotic mRNAs for subsequent translation by the ribosome. Both the spliceosome and ribosome, as well as many other RNA and DNA processing machineries, contain central RNA components that endow...
متن کاملIntegrating single-molecule experiments and discrete stochastic models to understand heterogeneous gene transcription dynamics.
The production and degradation of RNA transcripts is inherently subject to biological noise that arises from small gene copy numbers in individual cells. As a result, cellular RNA levels can exhibit large fluctuations over time and from one cell to the next. This article presents a range of precise single-molecule experimental techniques, based upon RNA fluorescence in situ hybridization, which...
متن کاملEndogenous α-SYN protein analysis on human brain tissues using single-molecule pull-down assay
Alpha-synuclein (α-SYN) is a central molecule in Parkinson’s disease pathogenesis. Despite several studies, the molecular nature of endogenous α-SYN especially in human brain samples is still not well understood due to the lack of reliable methods and the limited amount of bio-specimens. Here, we introduce α-SYN single-molecule pull-down (α-SYN SiMPull) assay combined with in vivo protein cross...
متن کاملRapid isolation and single-molecule analysis of ribonucleoproteins from cell lysate by SNAP-SiMPull.
Large macromolecular complexes such as the spliceosomal small nuclear ribonucleoproteins (snRNPs) play a variety of roles within the cell. Despite their biological importance, biochemical studies of snRNPs and other machines are often thwarted by practical difficulties in the isolation of sufficient amounts of material. Studies of the snRNPs as well as other macromolecular machines would be gre...
متن کاملComputational morphodynamics: a modeling framework to understand plant growth.
Computational morphodynamics utilizes computer modeling to understand the development of living organisms over space and time. Results from biological experiments are used to construct accurate and predictive models of growth. These models are then used to make novel predictions that provide further insight into the processes involved, which can be tested experimentally to either confirm or rul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2018
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2017.11.2554