Interactions of nanoparticles with pulmonary structures and cellular responses

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions of nanoparticles with pulmonary structures and cellular responses.

Combustion-derived and synthetic nano-sized particles (NSP) have gained considerable interest among pulmonary researchers and clinicians for two main reasons. 1) Inhalation exposure to combustion-derived NSP was associated with increased pulmonary and cardiovascular morbidity and mortality as suggested by epidemiological studies. Experimental evidence has provided a mechanistic picture of the a...

متن کامل

Invited Review Interactions of nanoparticles with pulmonary structures and cellular responses

Mühlfeld C, Rothen-Rutishauser B, Blank F, Vanhecke D, Ochs M, Gehr P. Interactions of nanoparticles with pulmonary structures and cellular responses. Am J Physiol Lung Cell Mol Physiol 294: L817–L829, 2008. First published February 8, 2008; doi:10.1152/ajplung.00442.2007.—Combustion-derived and synthetic nano-sized particles (NSP) have gained considerable interest among pulmonary researchers a...

متن کامل

Cellular interactions of therapeutically delivered nanoparticles.

INTRODUCTION Nanoparticles (NPs) are used extensively in drug delivery. They are administered through various routes in the host, and their uptake by the cellular environment has been observed in several pathways. After uptake, NPs interact with cells to different extents, depending on their size, shape, surface properties, ligands tagged to the surface and tumor architecture. Complete understa...

متن کامل

Investigation of cellular responses upon interaction with silver nanoparticles

In order for nanoparticles (NPs) to be applied in the biomedical field, a thorough investigation of their interactions with biological systems is required. Although this is a growing area of research, there is a paucity of comprehensive data in cell-based studies. To address this, we analyzed the physicomechanical responses of human alveolar epithelial cells (A549), mouse fibroblasts (NIH3T3), ...

متن کامل

Shape affects the interactions of nanoparticles with pulmonary surfactant.

The interactions with the pulmonary surfactant, the initial biological barrier of respiratory pathway, determine the potential therapeutic applications and toxicological effects of inhaled nanoparticles (NPs). Although much attention has been paid to optimize the physicochemical properties of NPs for improved delivery and targeting, shape effects of the inhaled NPs on their interactions with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Physiology-Lung Cellular and Molecular Physiology

سال: 2008

ISSN: 1040-0605,1522-1504

DOI: 10.1152/ajplung.00442.2007