Interface growth driven by a single active particle
نویسندگان
چکیده
منابع مشابه
Interface Growth Driven by Surface Kinetics
A moving, solidifying interface that grows by the instantaneous adsorption of a diffusing solute can be described by equations analogous to those of the classical one-sided Stefan problem for solidification. However, the behavior of precipitate growth by material deposition can depend on both surface kinetics and bulk drift of the depositing species. We generalize the Stefan problem and its int...
متن کاملParticle in Cell-Monte Carlo Collisions of a Plasma Column Driven by Surface Wave Plasma Discharges
In this work, applicability of Particle in Cell-Monte Carlo Collisions (PIC-MCC) simulation method for better understanding of the plasma physical mechanisms and real important aspects of a plasma column driven by surface wave plasma discharges that is used in plasma antennas is examined. Via the implementation of geometry and physical parameters of the plasma column to an Object Oriented PIC-M...
متن کاملInterface Growth Driven by Surface Kinetics and Convection
A moving, solidifying interface that grows by the instantaneous adsorption of a diffusing solute is described by the classic one-sided “Stefan problem” [15, 19]. More generally, the behavior of precipitate growth can depend on both surface kinetics and bulk drift of the depositing species. We generalize the Stefan problem and its interface boundary condition to explicitly account for both surfa...
متن کاملBone and cartilage differentiation of a single stem cell population driven by material interface
Adult stem cells, such as mesenchymal stem cells, are a multipotent cell source able to differentiate towards multiple cell types. While used widely in tissue engineering and biomaterials research, they present inherent donor variability and functionalities. In addition, their potential to form multiple tissues is rarely exploited. Here, we combine an osteogenic nanotopography and a chondrogeni...
متن کاملMultiple Active Contours Driven by Particle Swarm Optimization for Cardiac Medical Image Segmentation
This paper presents a novel image segmentation method based on multiple active contours driven by particle swarm optimization (MACPSO). The proposed method uses particle swarm optimization over a polar coordinate system to increase the energy-minimizing capability with respect to the traditional active contour model. In the first stage, to evaluate the robustness of the proposed method, a set o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2019
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.100.052120