Interpolation functions of feedforward neural networks
نویسندگان
چکیده
منابع مشابه
Generalization ability of Boolean functions implemented in feedforward neural networks
We introduce a measure for the complexity of Boolean functions that is highly correlated with the generalization ability that could be obtained when the functions are implemented on feedforward neural networks. The measure, based on the calculation of the number of neighbour examples that differ in their output value, can be simple computed from the definition of the functions, independently of...
متن کاملImage Interpolation using Feedforward Neural Network
As various kinds of output devices emerged, such as highresolution printers or a display of PDA(Personal Digital Assistant), the importance of high-quality resolution conversion has been increasing. This paper proposes a new method for enlarging image with high quality. One of the largest problems on image enlargement is the exaggeration of the jaggy edges. To remedy this problem, we propose a ...
متن کاملFeedforward Neural Networks
Here x is an input, y is a “label”, v ∈ Rd is a parameter vector, and f(x, y) ∈ Rd is a feature vector that corresponds to a representation of the pair (x, y). Log-linear models have the advantage that the feature vector f(x, y) can include essentially any features of the pair (x, y). However, these features are generally designed by hand, and in practice this is a limitation. It can be laborio...
متن کاملFeedforward Neural Networks
Feedforward neural networks have been used to perform classifications and to learn functional mappings. This paper compares human performance to feedforward neural networks using back propagation in generating functional relationships from limited data. Many business judgments are made in situations where decision makers are required to infer relationships porn partial, incomplete, and conflict...
متن کاملFast Feedforward Neural Networks with Diffused Nonlinear Weight Functions
In this paper, feedforward neural networks are presented that have nonlinear weight functions based on look--up tables, that are specially smoothed in a regularization called the diffusion. The idea of such a type of networks is based on the hypothesis that the greater number of adaptive parameters per a weight function might reduce the total number of the weight functions needed to solve a giv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2003
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(03)90242-2