Inverse identification of pipeline steel mechanical state by means of coupled magnetic measurements and artificial neural networks

نویسندگان

چکیده

Artificial neural networks are widely used to develop models able predict properties of interest by learning and establishing relationships between inputs outputs a system. It is particularly relevant for the inversion process in framework Non-Destructive Testing (NDT) involving strongly non-linear non-monotonic behavior and/or saturations. The case-study considered this work magnetic material subjected uniaxial mechanical stress, plastic strain field. An Neural Networks (ANN) model proposed corresponding remanent magnetization, coercive field maximum magnetization as target properties. A series experimental data made various magneto-mechanical measurements train, evaluate validate ANN model. suitably predicts second specimen same field, stress ranges first specimen. inverse then loading from signature. Unique accurate solutions found that proves relevance machine approach such NDT application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

Defects Identification in Textile by Means of Artificial Neural Networks

In this paper we use a neural network approach for defects identification in textile. The images analyzed came from an artificial vision system that we used to acquire and memorize them in bitmap file format. The vision system is made of two grey scale line scan camera arrays and each array is composed of four CCD cameras with a sensor of 2048 pixels. Every single camera has a field of view of ...

متن کامل

monthly runoff forecasting by means of artificial neural networks (anns)

over the last decade or so, artificial neural networks (anns) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. however, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. for this reason, this study aims at de...

متن کامل

ESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS

In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavi...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: NDT & E international

سال: 2023

ISSN: ['0963-8695', '1879-1174']

DOI: https://doi.org/10.1016/j.ndteint.2022.102782