Inverse Limit Shape Problem for Multiplicative Ensembles of Convex Lattice Polygonal Lines

نویسندگان

چکیده

Convex polygonal lines with vertices in Z+2 and endpoints at 0=(0,0) n=(n1,n2)→∞, such that n2/n1→c∈(0,∞), under the scaling n1−1, have limit shape γ* respect to uniform distribution, identified as parabola arc c(1−x1)+x2=c. This is universal a large class of so-called multiplicative ensembles random lines. The present paper concerns inverse problem shape. In contrast aforementioned universality γ*, we demonstrate that, for any strictly convex C3-smooth γ⊂R+2 started origin slope each point not exceeding 90∘, there sequence probability measures Pnγ on corresponding spaces lines, which curve γ

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit shape of random convex polygonal lines on Z: Even more universality

The paper is concerned with the limit shape (under some probability measure) of convex polygonal lines on Z+ starting at the origin and with the right endpoint n = (n1, n2) → ∞. In the case of the uniform measure, the explicit limit shape γ∗ was found independently by Vershik, Bárány and Sinai. Bogachev and Zarbaliev recently showed that the limit shape γ∗ is universal in a certain class of mea...

متن کامل

Unified derivation of the limit shape for multiplicative ensembles of random integer partitions with equiweighted parts

We derive the limit shape of Young diagrams, associated with growing integer partitions, with respect to multiplicative probability measures underpinned by the generating functions of the form F(z) = ∞l=1F0(zl) (which entails equal weighting among possible parts l ∈ N). Under mild technical assumptions on the function H0(u) = ln(F0(u)), we show that the limit shape ω∗(x) exists and is given by ...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

The inverse moment problem for convex polytopes

We present a general and novel approach for the reconstruction of any convex d-dimensional polytope P , assuming knowledge of finitely many of its integral moments. In particular, we show that the vertices of an N-vertex convex polytope in R can be reconstructed from the knowledge of O(DN) axial moments (w.r.t. to an unknown polynomial measure of degree D), in d + 1 distinct directions in gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11020385