Investigations of non-linear induction motor model using the Gudermannian neural networks
نویسندگان
چکیده
This study aims to solve the non-linear fifth-order induction motor model (FO-IMM) using Gudermannian neural networks (GNN) along with optimization procedures of global search as a genetic algorithm together quick local process active-set technique (GNN-GA-AST). The GNN are executed discretize FO-IMM prompt fitness function in procedure mean square error. exactness GNN-GA-AST is observed by comparing obtained results reference results. numerical performances stochastic provided tackle three different variants based on authenticate consistency, significance and efficacy designed GNN-GA-AST. Additionally, statistical illustrations available precision, accuracy convergence
منابع مشابه
Robust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کاملon the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولInduction Motor Vss Control Using Neural Networks
The authors present a novel approach to control this kind of motor. Modifying published results for nonlinear identification using dynamic neural networks, they propose a new neural network identifier of triangular form. Based on this model a new control law, which combines sliding mode and block control is derived. This new neural identifier and the proposed control law allow trajectory tracki...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Thermal Science
سال: 2022
ISSN: ['0354-9836', '2334-7163']
DOI: https://doi.org/10.2298/tsci210508261s