Irreducibility of Lagrangian Quot schemes over an algebraic curve

نویسندگان

چکیده

Abstract Let C be a complex projective smooth curve and W symplectic vector bundle of rank 2 n over . The Lagrangian Quot scheme $$LQ_{-e}(W)$$ L Q - e ( W ) parameterizes subsheaves degree $$-e$$ which are isotropic with respect to the form. We prove that is irreducible generically expected dimension for all large e , generic element saturated stable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Punctual Quot Schemes for Algebraic Surfaces

Let S be a smooth projective surface over the field of complex numbers C. Fix a closed point s ∈ S and a pair of positive integers r, d. By results of Grothendieck (cf. [6], [11]) there exists a projective scheme Quot [s] (r, d) parametrizing all quotient sheaves O ⊕r S → A of length d supported at s. We consider this scheme with its reduced scheme structure and call it the punctual Quot scheme...

متن کامل

On the Cohomology of Brill-noether Loci over Quot Schemes

Let C be a smooth projective irreducible curve over an algebraic closed field k of characteristic 0. We consider Brill-Noether loci over the moduli space of morphisms from C to a Grassmannian G(m, n) of m−planes in k and the corresponding Quot schemes of quotients of a trivial vector bundle on C compactifying the spaces of morphisms. We study in detail the case in which m = 2, n = 4. We prove r...

متن کامل

On the Cohomology of Brill-noether Strata over Quot Schemes

We define a Brill-Noether stratification over the Quot scheme parametrizing quotients of a trivial bundle on a curve and we compute their cohomology classes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2021

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02807-6