Irreducible representations of the $C\sp{\ast} $-algebra generated by an $n$-normal operator

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IRREDUCIBLE REPRESENTATIONS OF THE HAMILTONIAN ALGEBRA H(2r; n)

Let L = H(2r; n) be a graded Lie algebra of Hamiltonian type in the Cartan type series over an algebraically closed field of characteristic p > 2. In the generalized restricted Lie algebra setup, any irreducible representation of L corresponds uniquely to a (generalized) p-character χ. When the height of χ is no more than min{pni − pni−1 | i = 1, 2, . . . , 2r} − 2, the corresponding irreducibl...

متن کامل

CLASSIFICATION THEOREM ON IRREDUCIBLE REPRESENTATIONS OF THE q-DEFORMED ALGEBRA

The aim of this paper is to give a complete classification of irreducible finite-dimensional representations of the nonstandard q-deformation U ′ q(son) (which does not coincide with the Drinfel’d-Jimbo quantum algebra Uq(son)) of the universal enveloping algebra U(son(C)) of the Lie algebra son(C) when q is not a root of unity. These representations are exhausted by irreducible representations...

متن کامل

IRREDUCIBLE REPRESENTATIONS OF DEFORMED OSCILLATOR ALGEBRA AND q-SPECIAL FUNCTIONS

Different generators of a deformed oscillator algebra give rise to oneparameter families of q-exponential functions and q-Hermite polynomials related by generating functions. Connections of the Stieltjes and Hamburger classical moment problems with the corresponding resolution of unity for the q-coherent states and with ’coordinate’ operators Jacobi matrices, are also pointed out. Permanent add...

متن کامل

The Measure Algebra as an Operator Algebra

Introduction. In § I, it is shown that M(G)*, the space of bounded linear functionals on M(G), can be represented as a semigroup of bounded operators on M(G). Let A denote the non-zero multiplicative linear functionals on M(G) and let P be the norm closed linear span of A in M(G)*. In § II, it is shown that P , with the Arens multiplication, is a commutative J3*-algebra with identity. Thus P = ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1972

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1972-0306930-0