Isometries and Maps Compatible with Inverted Jordan Triple Products on Groups
نویسندگان
چکیده
منابع مشابه
Jordan Triple Elementary Maps on Rings
We prove that Jordan triple elementary surjective maps on unital rings containing a nontrivial idempotent are automatically additive. The first result about the additivity of maps on rings was given by Martindale III in an excellent paper [7]. He established a condition on a ring R such that every multiplicative bijective map on R is additive. More precisely, he proved the following theorem. Th...
متن کاملJordan Semi-Triple Multiplicative Maps on the Symmetric Matrices
In this paper, we show that if an injective map on symmetric matrices n S C satisfies then , , n ABA A B A A B S C , Φ t f A SA S for all n A S C , where f is an injective homomorphism on , is a complex orthogonal matrix and C S f A is the image of A under f applied entrywise.
متن کاملOn strongly Jordan zero-product preserving maps
In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...
متن کاملAdditive Maps Preserving Idempotency of Products or Jordan Products of Operators
Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...
متن کاملAdditivity of maps preserving Jordan $eta_{ast}$-products on $C^{*}$-algebras
Let $mathcal{A}$ and $mathcal{B}$ be two $C^{*}$-algebras such that $mathcal{B}$ is prime. In this paper, we investigate the additivity of maps $Phi$ from $mathcal{A}$ onto $mathcal{B}$ that are bijective, unital and satisfy $Phi(AP+eta PA^{*})=Phi(A)Phi(P)+eta Phi(P)Phi(A)^{*},$ for all $Ainmathcal{A}$ and $Pin{P_{1},I_{mathcal{A}}-P_{1}}$ where $P_{1}$ is a nontrivial projection in $mathcal{A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tokyo Journal of Mathematics
سال: 2012
ISSN: 0387-3870
DOI: 10.3836/tjm/1358951327