Isomorphic and isometric structure of the optimal domains for Hardy-type operators
نویسندگان
چکیده
We investigate the structure of optimal domains for Hardy-type operators including, example, classical Cesàro, Copson and Volterra as well some their generalizations. prove that, in sense, abstract Cesàro
منابع مشابه
the investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
Optimal Hardy–littlewood Type Inequalities for Polynomials and Multilinear Operators
Abstract. In this paper we obtain quite general and definitive forms for Hardy–Littlewood type inequalities. Moreover, when restricted to the original particular cases, our approach provides much simpler and straightforward proofs and we are able to show that in most cases the exponents involved are optimal. The technique we used is a combination of probabilistic tools and of an interpolative a...
متن کاملthe underlying structure of language proficiency and the proficiency level
هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...
15 صفحه اولOptimal Hardy inequalities for general elliptic operators with improvements
Necessary and sufficient conditions on V are obtained (in terms of the solvability of a linear pde) for (3) to hold. Analogous results involving improvements are obtained for the weighted versions. We establish optimal inequalities which are similar to (1) and are valid for u ∈ H(Ω). We obtain results on improvements of this inequality which are similar to the above results on improvements. In ...
متن کاملBilinear Operators on Herz-type Hardy Spaces
The authors prove that bilinear operators given by finite sums of products of Calderón-Zygmund operators on Rn are bounded from HK̇11 q1 × HK̇ α2,p2 q2 into HK̇ q if and only if they have vanishing moments up to a certain order dictated by the target space. Here HK̇ q are homogeneous Herz-type Hardy spaces with 1/p = 1/p1 +1/p2, 0 < pi ≤ ∞, 1/q = 1/q1 +1/q2, 1 < q1, q2 < ∞, 1 ≤ q < ∞, α = α1 + α2 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2021
ISSN: ['0039-3223', '1730-6337']
DOI: https://doi.org/10.4064/sm200211-8-9